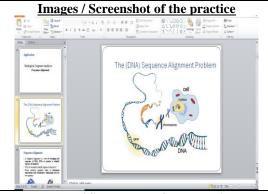


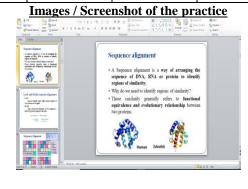
(Affiliated to ANNA University, Chennai and Approved by AICTE, New Delhi)
Recognized by UGC, Accredited by NBA (B.Tech-IT)

KGiSL Campus, 365, Thudiyalur Road, Saravanampatti, Coimbatore – 641035

INTERNAL QUALITY ASSURANCE CELL (IQAC)

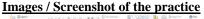
Implementation details of Innovative Teaching Practices

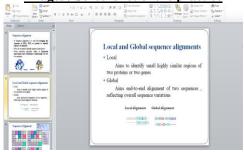

Year / Semester / Section: II/ IV/ A&B	Degree & Branch: B.E. CSE
Course Code: CS8451	Course Name: Design and Analysis of Algorithms
Unit: 2	Toxics String metabing
Activity Chosen: Lecture with Analogy	Topic: String matching


Details of the Implementation:

- The concept of string matching is explained with an analogy in the classroom for 20 minutes.
- Based on the discussion, the faculty will ask the students to think about the given problem for 5 minutes individually without discussing it with others in the class.
- Finally faculty asks the students to share their views with the entire class to assess the understanding of the topic.

• Faculty records their proceedings and measures students' progress before and after implementation.


PO	PO1	PO2	PO8	PO10	PO12	
Relevance	1	2	1	1	2	



Benefit of the practice:

• Lecture with Analogy helps the students to have better understanding of the concept of string matching and relate it to real world applications

(Affiliated to ANNA University, Chennai and Approved by AICTE, New Delhi)
Recognized by UGC, Accredited by NBA (B.Tech-IT)

KGiSL Campus, 365, Thudiyalur Road, Saravanampatti, Coimbatore – 641035

INTERNAL QUALITY ASSURANCE CELL (IQAC)

Implementation details of Innovative Teaching Practices

Year / Semester / Section: II/ IV/ A&B	Degree & Branch: B.E. CSE
Course Code: CS8451	Course Name: Design and Analysis of Algorithms
Unit: 2	Topic: Closest pair & Convex Hull problem
Activity Chosen: Lecture with Analogy	Topic: Closest pail & Convex Hull problem

Details of the Implementation:

- The concept of closest pair & convex Hull problem is explained with an analogy in the classroom for 20 minutes.
- Based on the discussion, the faculty will ask the students to think about the given problem for 5 minutes individually without discussing it with others in the class.
- Finally faculty asks the students to share their views with the entire class to assess the understanding of the topic.
- Faculty record their proceedings and measure students' progress before and after implementation.

PO	PO1	PO2	PO8	PO10	PO12	
Relevance	1	2	1	1	2	

Conclusion Company Experience Support Counter for in Prince

Therefore 'V' crigit to the counter part Thank provides across our line.

Therefore 'V' crigit to the counter part Thank provides across our line.

Therefore 'V' crigit to the counter part Thank provides across our line.

Therefore 'V' crigit to the counter part Thank provides across our line.

Therefore 'V' crigit to the counter part Thank provides across our line.

Therefore 'V' crigit to the counter part Thank provides across our line.

Therefore 'V' crigit to the counter part Thank provides across our line.

Therefore 'V' crigit to the counter part Thank provides across our line.

Therefore 'V' crigit to the counter part Thank provides across our line.

Therefore 'V' crigit to the counter part Thank provides across our line.

Therefore 'V' crigit to the counter or the line to the line of the line part across our line.

Images / Screenshot of the practice

Images / Screenshot of the practice

Images / Screenshot of the practice

Benefit of the practice:

• Lecture with Analogy helps the students to have better understanding of the concept of closest pair and convex hull concepts and relate it to real world applications

(Affiliated to ANNA University, Chennai and Approved by AICTE, New Delhi)

Recognized by UGC, Accredited by NBA (B.Tech-IT)

KGiSL Campus, 365, Thudiyalur Road, Saravanampatti, Coimbatore – 641035

INTERNAL QUALITY ASSURANCE CELL (IQAC)

Implementation details of Innovative Teaching Practices

Year / Semester / Section: II/ IV/ A&B	Degree & Branch: B.E. CSE
Course Code: CS8493	Course Name: Operating Systems
Unit: I	Topic: Computer System Overview, Basic Elements
Activity Chosen: Lecture with Analogy	& Instruction Execution

Details of the Implementation:

- The concept of Computer System Overview and Elements is explained with an analogy in the classroom for 10 minutes.
- Based on the discussion, the faculty will ask the students to think about the given problem for 5 minutes individually without discussing it with others in the class.
- Finally faculty asks the students to share their views with the entire class to assess the understanding of the topic.

• Faculty records their proceedings and measures students' progress before and after implementation.

PO	PO1	PO2	PO10	PO12	PSO1	
Relevance	2	2	1	2	2	

Images / Screenshot of the practice

Images / Screenshot of the practice

Computer System Overview

- Exploits the hardware resources of one or more processors
- Provides a set of services to system users
- · Manages secondary memory and I/O devices

Images / Screenshot of the practice

AARAMBIKALAANGALA......

Mind Voice by OS

Images / Screenshot of the practice

Operating System

It is a program that provides an interface between the software and hardware of a computer.

An Operating system offers an environment for the user to execute the software using the hardware

Benefit of the practice:

• Lecture with Analogy helps the students to have better understanding of the concept of Operating System and its elements

(Affiliated to ANNA University, Chennai and Approved by AICTE, New Delhi)

Recognized by UGC, Accredited by NBA (B.Tech-IT)

KGiSL Campus, 365, Thudiyalur Road, Saravanampatti, Coimbatore – 641035

INTERNAL QUALITY ASSURANCE CELL (IQAC)

Implementation details of Innovative Teaching Practices

Year / Semester / Section: II/ IV/ A&B	Degree & Branch: B.E. CSE		
Course Code: CS8493	Course Name: Operating Systems		
Unit: V	Tania, Makila OC 100 and Andreid		
Activity Chosen: Lecture with Analogy	Topic: Mobile OS - iOS and Android		

Details of the Implementation:

- The difference between iOS and Android OS is explained with an analogy in the classroom for 20 minutes.
- Based on the discussion, the faculty will ask the students to think about the given problem for 5 minutes individually without discussing it with others in the class.
- Finally faculty asks the students to share their views with the entire class to assess the understanding of the topic.
- Faculty records their proceedings and measures students' progress before and after implementation.

PO	PO1	PO2	PO10	PO12	PSO1	
Relevance	2	2	1	2	2	

Images / Screenshot of the practice When iOS user swipe apps to close in iPhone When android user swipe apps to close in iPhone

Images / Screenshot of the practice

Images / Screenshot of the practice

	Android	ios	Windows			
Memory Management						
Memory usage	High	Low	High			
Memory used for App handling	RAM	RAM	RAM + VM			
Process running in background	Not Efficiently	Efficiently	Not Efficiently			
Use of Garbage Collector	Yes	No	Yes			
Background Processes	Do not freeze	Freeze	Suspend			
To increase process speed	Uses internal memory	Don't use internal memory	Uses internal or virtual memory			
Interface	User Friendly	User Friendly	Not User Friendly			
Increase in Memory demand	Lag in app handling	No lag in app handling	Lag in app handling			
Shortage of Memory	May kill some processes	Freeze background processes	Uses Virtual Memory			
Capable of loading large number of apps	No	No	Yes			
large number of apps	Sec.	urity				
Arrival of new process	May kill existing process	Freeze some processes	No other processes will be affected			
Utilities used	Own and third party	Own	Third Party Mostly			
Issue Occurrence	Use patches	Use patches	Deliver updates			
Rooting	Allowed	Not allowed	Not allowed			

Benefit of the practice:

 Lecture with Analogy helps the students to have a clarity on what iOS and Android offers and what not.

(Affiliated to ANNA University, Chennai and Approved by AICTE, New Delhi)
Recognized by UGC, Accredited by NBA (B.Tech-IT)

KGiSL Campus, 365, Thudiyalur Road, Saravanampatti, Coimbatore – 641035

INTERNAL QUALITY ASSURANCE CELL (IQAC)

Implementation details of Innovative Teaching Practices

Year / Semester / Section: II/ IV/ A&B	Degree & Branch: B.E. CSE		
Course Code: CS8493	Course Name: Operating Systems		
Unit: II	Torio, Comphanication handware Mutan lade		
Activity Chosen: Lecture with Analogy	Topic: Synchronization hardware, Mutex locks		

Details of the Implementation:

- The concept of Syncronization Hardware, Mutex locks is explained with an analogy in the classroom for 20 minutes.
- Based on the discussion, the faculty will ask the students to think about the given problem for 5 minutes individually without discussing it with others in the class.
- Finally faculty asks the students to share their views with the entire class to assess the understanding of the topic.

• Faculty records their proceedings and measures students' progress before and after implementation.

PO	PO1	PO2	PO10	PO12	PSO1	
Relevance	2	2	1	2	2	

Images / Screenshot of the practice

Mutual Exclusion

Only one process can enter in to the critical section at a time.

Images / Screenshot of the practice

clay happing Months (1) on the South Google Slides

- Previous solutions are complicated and generally inaccessible to application programmers
- OS designers build software tools to solve critical section problem
- Simplest is mutex lock
- Protect a critical section by first acquire() a lock then release() the lock
 - Boolean variable indicating if lock is available or not
- Calls to acquire() and release() must be atomic
 - Usually implemented via hardware atomic instructions
 - But this solution requires busy waiting

 This lock therefore called a spinlock

Images / Screenshot of the practice

Critical Section

Critical Section in OS is a part of the program where shared resources are

accessed by the process

Images / Screenshot of the practice

Semaphore

Synchronization tool to critical section problem. Has two operations

Wait() -

Signal()

Benefit of the practice:

 Lecture with Analogy helps the students to have better understanding of the Synchronization Hardware and Mutex locks.